66 research outputs found

    Computing with viruses

    Get PDF
    In recent years, different computing models have emerged within the area of Unconven-tional Computation, and more specifically within Natural Computing, getting inspiration from mechanisms present in Nature. In this work, we incorporate concepts in virology and theoretical computer science to propose a novel computational model, called Virus Ma-chine. Inspired by the manner in which viruses transmit from one host to another, a virus machine is a computational paradigm represented as a heterogeneous network that con-sists of three subnetworks: virus transmission, instruction transfer, and instruction-channel control networks. Virus machines provide non-deterministic sequential devices. As num-ber computing devices, virus machines are proved to be computationally complete, that is, equivalent in power to Turing machines. Nevertheless, when some limitations are imposed with respect to the number of viruses present in the system, then a characterization for semi-linear sets is obtained

    Structural network inference from time-series data using a generative model and transfer entropy

    Get PDF
    In this paper we develop a novel framework for inferring a generative model of network structure representing the causal relations between data for a set of objects characterized in terms of time series. To do this we make use of transfer entropy as a means of inferring directed information transfer between the time-series data. Transfer entropy allows us to infer directed edges representing the causal relations between pairs of time series, and has thus been used to infer directed graph representations of causal networks for time-series data. We use the expectation maximization algorithm to learn a generative model which captures variations in the causal network over time. We conduct experiments on fMRI brain connectivity data for subjects in different stages of the development of Alzheimer’s disease (AD). Here we use the technique to learn class exemplars for different stages in the development of the disease, together with a normal control class, and demonstrate its utility in both graph multi-class and binary classifications. These experiments are showing the effectiveness of our proposed framework when the amounts of training data are relatively small

    3D vasculature segmentation using localized hybrid level-set method

    Get PDF
    Background: Intensity inhomogeneity occurs in many medical images, especially in vessel images. Overcoming the difficulty due to image inhomogeneity is crucial for the segmentation of vessel image. Methods: This paper proposes a localized hybrid level-set method for the segmentation of 3D vessel image. The proposed method integrates both local region information and boundary information for vessel segmentation, which is essential for the accurate extraction of tiny vessel structures. The local intensity information is firstly embedded into a region-based contour model, and then incorporated into the level-set formulation of the geodesic active contour model. Compared with the preset global threshold based method, the use of automatically calculated local thresholds enables the extraction of the local image information, which is essential for the segmentation of vessel images. Results: Experiments carried out on the segmentation of 3D vessel images demonstrate the strengths of using locally specified dynamic thresholds in our level-set method. Furthermore, both qualitative comparison and quantitative validations have been performed to evaluate the effectiveness of our proposed model. Conclusions: Experimental results and validations demonstrate that our proposed model can achieve more promising segmentation results than the original hybrid method does

    High precision implicit modeling for patient-specific coronary arteries

    Get PDF
    High precision geometric reconstruction of patient-specific coronary arteries plays a crucial role in visual diagnosis, treatment decision-making, and the evaluation of the therapeutic effect of interventions in coronary artery diseases. It is also a fundamental task and a basic requirement in the numerical simulation of coronary blood flow dynamics. In this paper, a new implicit modeling technique for the geometric reconstruction of patient-specific coronary arteries has been developed. In the proposed method, the coronary arteries geometry is reconstructed segment by segment using radial basis functions with ellipsoid constraint from the point cloud obtained with a volumetric vascular image segmentation method, and the individually reconstructed coronary branches are then combined using a shape-preserving implicit blending operation to form a complete coronary artery surface. The experiment results and validations indicate that the reconstructed vascular shapes are of high smoothness and faithfulness

    Research on Techniques of Multifeatures Extraction for Tongue Image and Its Application in Retrieval

    Get PDF
    Tongue diagnosis is one of the important methods in the Chinese traditional medicine. Doctors can judge the disease’s situation by observing patient’s tongue color and texture. This paper presents a novel approach to extract color and texture features of tongue images. First, we use improved GLA (Generalized Lloyd Algorithm) to extract the main color of tongue image. Considering that the color feature cannot fully express tongue image information, the paper analyzes tongue edge’s texture features and proposes an algorithm to extract them. Then, we integrate the two features in retrieval by different weight. Experimental results show that the proposed method can improve the detection rate of lesion in tongue image relative to single feature retrieval

    Accurate geometry modeling of vasculatures using implicit fitting with 2D radial basis functions

    Get PDF
    Accurate vascular geometry modeling is an essential task in computer assisted vascular surgery and therapy. This paper presents a vessel cross-section based implicit vascular modeling technique, which represents a vascular surface as a set of locally fitted implicit surfaces. In the proposed method, a cross-section based technique is employed to extract from each cross-section of the vascular surface a set of points, which are then fitted with an implicit curve represented as 2D radial basis functions. All these implicitly represented cross-section curves are then being considered as 3D cylindrical objects and combined together using a certain partial shape-preserving spline to build a complete vessel branch; different vessel branches are then blended using a extended smooth maximum function to construct the complete vascular tree. Experimental results show that the proposed method can correctly represent the morphology and topology of vascular structures with high level of smoothness. Both qualitative comparison with other methods and quantitative validations to the proposed method have been performed to verify the accuracy and smoothness of the generated vascular geometric models

    ScribFormer: Transformer Makes CNN Work Better for Scribble-based Medical Image Segmentation

    Get PDF
    Most recent scribble-supervised segmentation methods commonly adopt a CNN framework with an encoder-decoder architecture. Despite its multiple benefits, this framework generally can only capture small-range feature dependency for the convolutional layer with the local receptive field, which makes it difficult to learn global shape information from the limited information provided by scribble annotations. To address this issue, this paper proposes a new CNN-Transformer hybrid solution for scribble-supervised medical image segmentation called ScribFormer. The proposed ScribFormer model has a triple-branch structure, i.e., the hybrid of a CNN branch, a Transformer branch, and an attention-guided class activation map (ACAM) branch. Specifically, the CNN branch collaborates with the Transformer branch to fuse the local features learned from CNN with the global representations obtained from Transformer, which can effectively overcome limitations of existing scribble-supervised segmentation methods. Furthermore, the ACAM branch assists in unifying the shallow convolution features and the deep convolution features to improve model’s performance further. Extensive experiments on two public datasets and one private dataset show that our ScribFormer has superior performance over the state-of-the-art scribble-supervised segmentation methods, and achieves even better results than the fully-supervised segmentation methods. The code is released at https://github.com/HUANGLIZI/ScribFormer
    • …
    corecore